Search results for "Nuclear lamina"

showing 7 items of 7 documents

Cardiac electrical defects in progeroid mice and Hutchinson-Gilford progeria syndrome patients with nuclear lamina alterations

2016

This work was supported by Spanish Ministry of Economy and Competitiveness (MINECO) Grants SAF2010-16044 and SAF2013-46663-R (to V.A.), SAF2011-30312 and SAF2014-58286-C2-1-R (to L.H.-M.), SAF2011-30088 (to E.D.), and SAF2014-52413-R (to C.L.-O.) and Fondo de Investigación Sanitaria del Instituto de Salud Carlos III Grants RD12/0042/0028 (to V.A.), RD12/0042/0011 (to J.T.), and RD12/0042/0002 (to L.H.-M.), with cofunding from the Fondo Europeo de Desarrollo Regional and the Progeria Research Foundation. J.A.G. is the recipient of a U-Mobility Grant from the Marie Curie cofunding of Regional, National and International Programme (Grant 246550). The Instituto Universitario de Oncología is sup…

0301 basic medicineMaleHutchinson–Gilford progeria syndrome calcium handling connexin43 prelamin A progerinElectrònica en cardiologia030204 cardiovascular system & hematologyPathogenesisCiencias Biomedicas0302 clinical medicineProgeriaCardiac Conduction System DiseasefisiologiapatologíaTecnología médicaChildCiencias médicasMice KnockoutProgeriaprelamin AMultidisciplinaryintegumentary systemMetalloendopeptidasesHeartProgerinHutchinson-Gilford progeria syndrome3. Good health:Enginyeria biomèdica::Electrònica biomèdica::Electrònica en cardiologia [Àrees temàtiques de la UPC]Sarcoplasmic Reticulummedicine.anatomical_structurePNAS PlusChild Preschoolcardiovascular systemNuclear laminaFemalemedicine.symptomBradycardiaAdultmedicine.medical_specialtycongenital hereditary and neonatal diseases and abnormalitiesAdolescentBiology03 medical and health sciencesQRS complexYoung AdultElectrònica mèdicaInternal medicinemedicineAnimalsHumansPR intervalHutchinson–Gilford progeria syndromeNuclear LaminaMyocardiumMembrane Proteinsnutritional and metabolic diseasesArrhythmias Cardiacmedicine.diseaseMedical electronicsconnexin43Mice Inbred C57BL030104 developmental biologyEndocrinologyVentricleprogerinConnexin 43calcium handlingsistema cardiovascularCalcium
researchProduct

The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression

2008

Inner nuclear membrane proteins containing a LEM (LAP2, emerin, and MAN1) domain participate in different processes, including chromatin organization, gene expression, and nuclear envelope biogenesis. In this study, we identify a robust genetic interaction between transcription export (TREX) factors and yeast Src1, an integral inner nuclear membrane protein that is homologous to vertebrate LEM2. DNA macroarray analysis revealed that the expression of the phosphate-regulated genes PHO11, PHO12, and PHO84 is up-regulated in src1Δ cells. Notably, these PHO genes are located in subtelomeric regions of chromatin and exhibit a perinuclear location in vivo. Src1 spans the nuclear membrane twice an…

Chromatin ImmunoprecipitationSaccharomyces cerevisiae ProteinsGenes FungalSaccharomyces cerevisiaeProtein Sorting SignalsBiologyArticleGenètica molecularProton-Phosphate SymportersGene Expression Regulation FungalGene expressionmedicineExpressió genèticaInner membraneNuclear proteinNuclear poreNuclear membraneResearch ArticlesNucleoplasmMembrane ProteinsNuclear ProteinsCell BiologyTelomereMolecular biologyChromatinProtein Structure TertiaryChromatinAlternative SplicingGenòmicamedicine.anatomical_structureMultiprotein ComplexesNuclear lamina
researchProduct

Reorganization of Nuclear Pore Complexes and the Lamina in Late-Stage Parvovirus Infection

2015

Article

Parvovirus Canineanimal diseasesvirusesnuclear pore complexesImmunologyMicrobiologyParvoviridae InfectionsCapsidDogsVirologymedicineotorhinolaryngologic diseasesAnimalsDog DiseasesNuclear poreparvovovirusCell NucleusNuclear LaminaLamin Type BbiologyParvovirusParvovirus infectionCanine parvovirusLamin Type Abiology.organism_classificationmedicine.diseaseVirologyVirus-Cell InteractionsCell biologyNuclear Pore Complex ProteinsCell nucleusstomatognathic diseasesmedicine.anatomical_structureInsect ScienceNuclear PoreNuclear laminaNucleusLamin
researchProduct

A Glimpse into Chromatin Organization and Nuclear Lamina Contribution in Neuronal Differentiation

2023

During embryonic development stem cells undergo the differentiation process so that they can specialise for different functions within the organism. Complex programs of gene transcription are crucial for this process to happen. Epigenetic modifications and the architecture of chromatin in the nucleus, by the formation of specific regions of active as well as inactive chromatin, allow the coordinated regulation of the genes for each cell fate. In this mini review, we discuss the current knowledge regarding the regulation of three-dimensional chromatin structure during neuronal differentiation. We also focus on the role played in neurogenesis by the nuclear lamina that ensures the tethering o…

Settore BIO/18 - GeneticaepigeneticsGeneticsneuronal differentiationGenetics (clinical)nuclear laminachromatin organization
researchProduct

Chromatin epigenetics and nuclear lamina keep the nucleus in shape: Examples from natural and accelerated aging.

2022

As the repository of genetic information, the cell nucleus must protect DNA integrity from mechanical stresses. The nuclear lamina, which resides within the nuclear envelope (NE), is made up of lamins, intermediate filaments bound to DNA. The nuclear lamina provides the nucleus with the ability to deal with inward as well as outward mechanical stimuli. Chromatin, in turn, through its degrees of compaction, shares this role with the nuclear lamina, thus, ensuring the plasticity of the nucleus. Perturbation of chromatin condensation or the nuclear lamina has been linked to a plethora of biological conditions, that range from cancer and genetic diseases (laminopathies) to aging, both natural a…

Settore BIO/18 - Geneticanuclear mechanicsepigeneticsagingHGPSCell BiologyGeneral Medicinenuclear laminaBiology of the cellREFERENCES
researchProduct

Epigenetic involvement in Hutchinson-Gilford progeria syndrome: a mini-review.

2013

Hutchinson-Gilford progeria syndrome (HGPS) is a rare human genetic disease that leads to a severe premature ageing phenotype, caused by mutations in the <i>LMNA</i> gene. The <i>LMNA</i> gene codes for lamin-A and lamin-C proteins, which are structural components of the nuclear lamina. HGPS is usually caused by a de novo <i>C1824T</i> mutation that leads to the accumulation of a dominant negative form of lamin-A called progerin. Progerin also accumulates physiologically in normal ageing cells as a rare splicing form of lamin-A transcripts. From this perspective, HGPS cells seem to be good candidates for the study of the physiological mechanisms of ageing…

congenital hereditary and neonatal diseases and abnormalitiesAgingEuchromatinSettore BIO/11 - Biologia MolecolarecernaBiologySettore MED/13 - EndocrinologiaEpigenesis GeneticLMNAHistonesAdenosine TriphosphateProgeriaHGPS Progeria; epigenetics; chromatin; cernamedicineHumansEpigeneticsProtein PrecursorsChildEpigenesisGeneticsCell NucleusProgeriaintegumentary systemnutritional and metabolic diseasesNuclear ProteinsDNA Methylationmedicine.diseaseProgerinChromatin Assembly and DisassemblyLamin Type AChromatinCell biologySettore BIO/18 - GeneticaMicroRNAsSettore MED/03 - Genetica MedicaMutationHGPS ProgeriachromatinNuclear laminaGeriatrics and GerontologyepigeneticMi-2 Nucleosome Remodeling and Deacetylase ComplexGerontology
researchProduct

The prolyl-isomerase PIN1 is essential for nuclear Lamin-B structure and function and protects heterochromatin under mechanical stress.

2021

Summary: Chromatin organization plays a crucial role in tissue homeostasis. Heterochromatin relaxation and consequent unscheduled mobilization of transposable elements (TEs) are emerging as key contributors of aging and aging-related pathologies, including Alzheimer’s disease (AD) and cancer. However, the mechanisms governing heterochromatin maintenance or its relaxation in pathological conditions remain poorly understood. Here we show that PIN1, the only phosphorylation-specific cis/trans prolyl isomerase, whose loss is associated with premature aging and AD, is essential to preserve heterochromatin. We demonstrate that this PIN1 function is conserved from Drosophila to humans and prevents…

transposonsNeocortexMiceHeterochromatinProlyl isomeraseDrosophila ProteinsBiology (General)PhosphorylationRNA Small InterferingTissue homeostasisCells CulturedSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniNeuronsLamin Type BChemistryHP1phosphorylationneurodegenerationnuclear envelopePeptidylprolyl IsomeraseCell biologyDrosophila heterochromatin HP1 Lamin mechanical stress neurodegeneration nuclear envelope phosphorylation PIN1 transposonsNuclear laminaDrosophilaRNA InterferencePremature agingQH301-705.5HeterochromatinNuclear EnvelopeDrosophila; heterochromatin; HP1; Lamin; mechanical stress; neurodegeneration; nuclear envelope; phosphorylation; PIN1; transposonsSettore BIO/11 - Biologia MolecolareSettore MED/08 - Anatomia PatologicaGeneral Biochemistry Genetics and Molecular BiologyPIN1Alzheimer DiseaseSettore MED/05 - Patologia ClinicaAnimalsHumansHeterochromatin maintenancemechanical stressheterochromatinmechanical streMice Inbred C57BLNIMA-Interacting Peptidylprolyl IsomeraseChromobox Protein Homolog 5DNA Transposable ElementsHeterochromatin protein 1Stress MechanicalLaminLaminCell reports
researchProduct